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This Letter proposes a new numerical scheme for integrating the non-linear diffusion equation. It is
shown that it is linearly stable. Some tests are presented comparing this scheme to a popular decentered
version of the linearized Crank–Nicholson scheme, showing that, although this scheme is slightly less
accurate in treating the highly resolved waves, (i) the new scheme better treats highly non-linear systems,
(ii) better handles the short waves, (iii) for a given test bed turns out to be three to four times more
computationally cheap, and (iv) is easier in implementation.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Most fluid mechanical systems exhibit dissipation, either due
to viscosity or turbulent processes. Even when the phenomena
of interest are governed by essentially inviscid processes, it is of-
ten necessary to incorporate some numerical dissipative effects in
numerical models [1], for instance, to remove spurious energy ac-
cumulation at the smallest resolved scales.

In atmospheric models (numerical weather prediction, general
circulation models, climate modeling), planetary boundary layer
turbulence is one of the primary processes for transport of energy,
momentum and moisture. The turbulence schemes are often em-
pirical subgrid parameterizations such as, for instance, the Louis
scheme [2], or the more sophisticated Turbulent Kinetic Energy
(TKE) schemes (for an example see Ref. [3]). Those turbulent dif-
fusive processes can get different forms, ranging from a simple
non-linear diffusion equation to various non-linear higher-order
differential operators. Since such parameterizations exhibit already
a substantial modelling error in their mathematical formulation,
their accuracy is of less importance than the computational effi-
ciency.
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A well-known scheme for treating the diffusion equation is the
Crank–Nicholson scheme [4]. If this scheme is applied to the lin-
ear diffusion equation expressed in terms of second-order centered
spatial derivatives, it relies on the inversion of a tridiagonal matrix
to compute the time step. As was shown in Ref. [5], this method
is problematic in the case of non-linear diffusion in the planetary
boundary layer. The non-linearity is situation dependent, leading
to two problems: (i) even though many algorithms for solving
non-linear equations exist [6], it is very unpractical to apply them
for solving the Crank–Nicholson equation in the context of atmo-
spheric model codes, and (ii) for long time steps the system may
start to exhibit artificial oscillations.

In practice, algorithmic constraints in atmospheric models often
force us to invent numerical schemes for vertical diffusion that are
different than the ones used for ordinary differential equations [8],
nor is it possible to rely on general classes of algorithms for solving
partial differential equations [9]. For this reason some atmospheric
model codes, such as, for instance, the IFS code [7] apply schemes
resembling the Crank–Nicholson scheme, but where the diffusion
coefficients are computed explicitly. Stable solutions can be ob-
tained by applying schemes that are decentered in time [1], i.e.
so-called overimplicit schemes. These schemes need the inversion
of a tridiagonal matrix, which, within the current state of oper-
ational atmospheric models may obfuscate the model code, and
sometimes seriously restricts the introduction of new scientific de-
velopments. For instance, the implementation of a stable surface
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scheme within IFS numerical weather prediction model has been
severely complicated by the algorithm of the vertical turbulent dif-
fusion in the atmospheric part of the model [10].

In this Letter, we propose an alternative numerical finite-
difference scheme for solving the non-linear diffusion equation.
It has been put forth to address some specific needs within the
above-mentioned context of atmospheric modelling. The proposed
scheme in the present Letter computes the spatial derivatives of
the diffusive operator in an explicit manner, but nevertheless treats
the dissipated field partially in an implicit manner. As such it does
not need an inversion of an off-diagonal matrix. We argue that this
provides an alternative solution for the mentioned problems in the
atmospheric models, but we believe that this scheme may be of
interest for a more general class of applications as well.

2. The scheme

This Letter focuses on the following diffusion equation

∂ψ

∂t
= ∂

∂z
ν(ψ)

∂ψ

∂z
, (2.1)

where the diffusion coefficient ν depends on the field ψ , yield-
ing a non-linear differential operator. This equation expresses for
instance the turbulent diffusion in atmospheric models, where the
diffusion coefficients appear as the turbulent exchange coefficients.

A general class of integration schemes for this is
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where j = 1, . . . , N is the index of the grid points z j on a domain
from 0 to L with z0 = zN and with constant grid-point distance
�z = z j+1 − z j . Here ψn

j represents a numerical approximation to
ψ(t0 + n�t, z0 + j�z). The coefficients ν j+ 1

2
are evaluated on the

intermediate points halfway between the grid points j + 1 and j.
The parameter ξ specifies the degree of decentering. The scheme is
second-order accurate in time for ξ = 1/2, being the well-known
Crank–Nicholson scheme [4]. Increasing ξ will increase the stabil-
ity but will decrease its accuracy. In the case ξ > 1, this scheme
is called overimplicit. For a specific application, Eq. (2.2) should
be supplemented with the expressions to compute the coefficients
νn+1

j+ 1
2

as a function of the values ψn+1
j and ψn+1

j+1 .

Except in the purely explicit scheme where ξ = 0, the scheme
in Eq. (2.2) is difficult to solve since one essentially has to solve
non-linear equations. A popular trade off between both schemes
is the frequently used explicit coefficient, decentered field (ECDF)
scheme:
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where the diffusion coefficient ν is taken at time level n instead of
time level n + 1 in Eq. (2.2), which can then be straightforwardly
computed from the available ψn

j . It still has a better stability than
the purely explicit scheme, and the computational cost is reduced
compared to the scheme in Eq. (2.2), being now mainly dominated
by matrix inversions of tridiagonal systems. Cheap algorithms [1,
11] exist whose algorithmic cost scales linearly with the size N of

the domain. In the present Letter, it was decided not to rely on ex-
isting numerical packages [12] but coding the scheme in FORTRAN,
mimicking as much as possible the way it is done in existing atmo-
spheric models. The matrix inversion in Eq. (2.3) has been carried
out by calling the algorithm for the periodic domain as presented
in the appendix of Ref. [1].

The scheme in Eq. (2.3) is popular in atmospheric models such
as the European IFS model [7]. In that case it is utilized with
ξ = 1.5 to avoid non-linear numerical instabilities [5,7]. Also in the
context of atmospheric models, a stability dependent choice of the
coefficient ξ was proposed in Ref. [13] and in Ref. [14], a scheme
has been tested that approximates Eq. (2.2) by an iterative proce-
dure.

In this Letter we introduce a conditionally stable scheme which
shares the same computational cost of the purely explicit scheme.
If ψ is a variable that, for physical reasons can never be zero (for
instance, temperature expressed in Kelvin), we can compute

α j ≡ − 1

�z2
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2
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2
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, (2.4)

the new scheme is then
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j − ψn

j = −αn
j �t

[
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j + (1 − γ )ψn
j

]
, (2.5)

where γ is a decentering parameter in the same spirit as ξ in
Eq. (2.3). Note that α has the physical meaning of a local damping
coefficient.

A stability condition on γ is provided by Von Neumann’s
method, i.e. the amplification A defined by ψn+1

j =Aψn
j is com-

puted and the stability condition is that |A| < 1. The analysis is
relevant for the damping case, i.e. ν > 0 is constant. Then scheme
in Eq. (2.5) becomes
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where

β = ν�t

(�z)2
> 0.

For a monochromatic mode ψn
j = exp(ikz),

ψn
j±1 = exp(±ik�z)ψn

j . (2.7)

Plugging Eq. (2.7) into scheme (2.6) we get

ψn+1
j = 1 + 2(γ − 1)β(1 − cos(k�z))

1 + 2γ β(1 − cos(k�z))
ψn

j .

It is obvious that the scheme is stable for all values of k and ν
provided that γ � 1

2 .

3. Numerical experiments

The reference test bed that will be considered are the simpli-
fied tests presented in Ref. [5]. In that paper, a simple non-linear
damping equation

dX

dt
= −(

K X P )
X + S, (3.1)

was considered with X(t) a real variable depending on time t only,
K and P respectively represent the degree of stiffness and non-
linearity. The forcing was chosen as,

S(t) = 1 + sin

(
2π

t

20

)
.
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The partial differential equation

∂ψ

∂t
= ∂

∂z
ν

∂ψ

∂z
+ Sd, (3.2)

effectively reduces to Eq. (3.1) if ψ a complex monochromatic one-
dimensional wave of the form,

ψ(z, t) = X(t)eimz, (3.3)

with X(t) real and where the diffusion coefficient is taken as

ν(z) = C
[
ψ(z, t)ψ∗(z, t)

]P/2
. (3.4)

Here ψ∗ denotes the complex conjugate of ψ , and with C = K/m2

and Sd = Seimz . As can be seen in Ref. [5], X(t) never becomes
zero in the tests carried out in that paper.

The diffusive part of Eq. (3.2) has been discretized by the ECDF
scheme introduced in Eq. (2.3). The forcing term Sd at time tn =
t0 + n�t was incorporated in the form

Sn = 1 + sin

(
nπ�t

10

)
(3.5)

by adding it at the right-hand side of Eq. (2.3). This is exactly the
same form as in Ref. [5]. The diffusion coefficient is computed on
the intermediate points by

ν j+ 1
2
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[
ψ∗

j+ 1
2
ψ j+ 1

2

]P/2
(3.6)

with ψ j+ 1
2

≡ 1
2 (ψ j + ψ j+1).

For the new scheme in Eqs. (2.4)–(2.5) there is a subtlety to
address in the way the forcing Sd is coupled. In fact two options
have been studied.

The first one is

ψn+1
j = 1 − αn

j �t(1 − γ )

1 + αn
j �tγ

ψn
j + �t

1 + αn�tγ
Sn, (3.7)

which is obtained by adding the term in Eq. (3.5) to the right-hand
side of Eq. (2.5), but where, in the last term in Eq. (3.7), the αn

j has

been substituted by αn , being the average of αn
j ,

αn = 1

N

N∑
j=1

αn
j . (3.8)

This scheme will be referred to as the NEW scheme. The substitu-
tion of αn

j by αn is an important detail. When this was not done,
and when the model was integrated with a very high spatial res-
olution, it was found that numerical noise entering through αn

j in
the denominator of the forcing term, started to force the numerical
solution in a substantial manner, amplified by a non-linear feed-
back between the forcing and spurious oscillations of the diffusion.

Secondly, a scheme with two fractional steps [1] has been con-
sidered with the forcing coupled after the diffusion,

ψ̃ j − ψn
j = −αn

j �t
[
γ ψ̃ j + (1 − γ )ψn

j

]
,

ψn+1
j − ψ̃ j = �t Sn. (3.9)

This is the way different physical processes are treated in the IFS
model [7]. No problems have been observed with this scheme in
the setup presented here.

Note that no matrix inversion is needed in Eqs. (3.7) and (3.9).
The results of the tests will be only presented for the scheme

Fig. 1. The amplitude X as a function of time of the NEW scheme with K = 10, P = 2, N = 10 and (a) γ = 0.5 and (b) γ = 1.5, indicated by the solid line. We have used
a resolution �z = 1 and �t = 1. The dashed line represents the reference solution obtained by the centered ECDF scheme with high resolution �t = 0.01 and �z = 0.1,
N = 100 with ξ = 0.5.

Fig. 2. The amplitude X on a domain with N = 10, for (a) ECDF with K = 1000, P = 4, ξ = 6.0, and (b) NEW with K = 1000, P = 4, γ = 4.0.
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NEW as introduced in Eq. (3.7). This NEW scheme and the ECDF
scheme have been tested taking as initial condition a periodic field
ψ(z, t = 0) of the form introduced in Eq. (3.3), with wave length
L = N�z, and m = 2π

N�z . By restricting the tests to periodic fields,
the problem of the boundary conditions [15] is not studied in the
present Letter. The numerical solution of the scheme (3.7) should
then be comparable to the ones obtained with (3.8) in Ref. [5]. We
investigated the numerical behavior of the methods in the partic-
ular situations: K = 10 (non-stiff), K = 1000 (stiff), and the non-
linearity ranging from P = 1 (mildly non-linear) to P = 4 (strongly
non-linear).

We start with an illustration of the effect of the decentering
parameter γ in Eq. (2.5). We consider a resolution �z = 1 and
�t = 1. In Fig. 1 it can be seen that the use of the scheme in
Eq. (2.5) with K = 10, P = 2, N = 10 and γ = 0.5 leads to spurious
solutions, but that, by taking γ = 1.5, they are removed. This can
be compared to a reference solution, also indicated in Fig. 1 that

Table 1
The chosen values of the parameters ξ for the ECDF scheme and γ for the NEW
scheme to remove the oscillation for different values of P and K for N = 1, 10, 100.

K = 10 K = 1000

P = 1 P = 2 P = 3 P = 4 P = 1 P = 2 P = 3 P = 4

N = 4 ξ 1.0 NaN NaN NaN 1.5 NaN NaN NaN
γ 1.0 1.5 2.0 2.5 1.5 2.0 3.0 4.0

N = 10 ξ 1.0 1.5 2.0 NaN 1.5 2.0 3.0 NaN
γ 1.5 1.5 2.0 2.5 1.5 2.0 3.0 4.0

N = 100 ξ 1.0 1.5 2.0 NaN 1.5 3.0 4.0 NaN
γ 2.5 2.5 4.0 5.0 2.0 3.0 5.0 6.0

Fig. 3. Accuracy tests for NEW and the ECDF schemes for P = 2, K = 10 and N = 10.
The reference is a run with �t = 0.0001,�z = 1, ξ = 1/2.

has been obtained by the centered ECDF scheme with ξ = 0.5, with
a high resolution of �t = 0.01 and �z = 0.1, and with N = 100,
giving a good estimate of the exact solution.

Table 1 summarizes, for a variety of values of P and K , the γ
and the ξ values which guarantee a long time integration of 500
time steps without any spurious oscillations. The model was inte-
grated with N = 4,10, and 100, corresponding to the 4�x, 10�x
and 100�x wave. The choice was based on the visual aspects of
the output. Since this still allows for some arbitrariness, the values
were chosen as multiples of 0.5.

In the case P = 4, K = 1000, the solution of the ECDF scheme
started to grow after 450 time steps, as can be seen from Fig. 2a.
As shown in Fig. 2b this behavior did not occur in the NEW
scheme. The same problem occurred for N = 4 and P = 2,3,4. In-
creasing the decentering ξ did not cure the problem. It only made
it stable for a longer time period but eventually this type of nu-
merical instability did show up in the integration. This is indicated
in Table 1 by NaN (Not a Number). In other words, for sufficiently
high non-linearity, the ECDF scheme exhibits this kind of unsta-
ble behavior. For N = 4 and N = 10 the choices of the decentering
parameters for the ECDF and the NEW scheme coincide, except
(i) in the case P = 1, K = 10, where the NEW scheme with γ = 1.0
started to show small oscillations after 250 time steps, and (ii) the
unstable cases for the ECDF scheme indicated by NaN, where the
integration showed an instability of the kind in Fig. 2a. If the mode
becomes more resolved, i.e. considering N = 100, higher decenter-
ing values are needed for γ of the NEW scheme in order to remove
the spurious oscillations.

Next, we analyze the effect of the parameter values on the ac-
curacy of the method. As in Ref. [5] we consider the time interval
t ∈ [0,50]. A reference solution at the endpoint tend = 50 is ob-
tained by considering the ECDF scheme with very small time step
�t = 0.0001, taking �z = 1, and with ξ = 1/2 (making it second-
order accurate), yielding the field X ref. The error at tend is taken
as |X(tend) − X ref(tend)|. Fig. 3 shows a log–log plot of the error at
tend as a function of �t = 1/2 j ( j = 0,1, . . . ,7) for P = 2, K = 10,
N = 10 and for decentering values 1.5 and 6.0. The NEW scheme
has exactly the same accuracy curve as the ECDF scheme.

Finally, the computational efficiency of both schemes were
compared. This was estimated by running the scheme with 1000
time steps, and for values of N ranging from 100 to 1000. The mea-
surement of the cpu time in both ECDF and NEW was, in the code,
restricted to the operations needed to solve Eqs. (2.3) and (3.7)
respectively. In Fig. 4a the average cpu time was taken of 2000
integrations. It can be seen from this figure that in both cases
the increase in computational cost grows linearly. Fig. 4b shows
the ratio of the cpuECDF/cpuNEW. This shows, that for this test, the

Fig. 4. The cpu time (a) in both NEW scheme (solid line) and the ECDF scheme (dashed), for domain sizes ranging from 100 to 1000 grid points, and (b) the ratio of the cpu
time of the ECDF scheme over the cpu time of the NEW scheme.
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NEW scheme is about three to four times cheaper than the ECDF
scheme.

4. Discussion

This Letter proposed an alternative scheme for solving the non-
linear diffusion equation. For well-resolved modes it has been
shown to be equivalent to a scheme that is popular in the current
atmospheric models. For short waves and for strongly non-linear
systems, it has been shown to behave better. In the presented tests,
it turned out to be three to four times as computationally efficient
as the reference scheme.

On the other hand, for the long waves it has also been shown
that it needs to be applied with more decentering to control the
spurious oscillations. We think two options are worth studying to
improve this: (i) introducing a protection against a potential divi-
sion by zero in Eq. (2.4) and (ii) applying some numerical filtering
to control the 2�x mode. The study of this lies beyond the domain
of application of the present study and thus beyond the scope of
the present Letter.

This Letter is restricted to a diffusion scheme with second-
order finite difference approximation for the derivatives, in which
case the matrix to be inverted is tridiagonal. For a scheme us-
ing higher-order finite difference derivatives, the matrix inversion
would become even more computationally expensive. By avoiding
the inversion, the proposed new scheme may pay off even more in
that case.

Besides vertical turbulent diffusion in atmospheric models, we
believe that the proposed scheme may also be useful in other con-
texts. In Ref. [16] it is described how in the IFS model [7], the
computation of the derivatives in the diffusive parameterisation
is restricted to time level t for algorithmic reasons coming from
the fact that the derivatives are computed with Galerkin spectral
methods. This currently complicates the development of three-
dimensional turbulent diffusion parameterisation schemes that can
be called within operational models running with long time steps.
Indeed, in this model the derivatives of dissipative non-linear dif-

ferential operators of such schemes are necessarily explicit. If the
presently proposed scheme could be extended to such operators,
it would be worthwhile to investigate whether this problem could
be solved by dividing the field at time level t and multiplying by
the field at time level t + �t to construct the implicit term.
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