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Abstract

The k-day extreme precipitation depths (k=1, 2, 3, 4, 5, 7, 10, 15, 20, 25 and 30) at the climatological
network of Belgium (165 stations) are analysed to assess the regional GEV growth curves and to
determine the at-site fractiles. The calendar year and the hydrological summer and winter are
considered separately. The method proposed combines regional L-moment estimates of the GEV
parameters and tends to take advantage of a few long-term well-documented series. Therefore, a data
extension procedure based on the fractiles method has been used to extend the 1951-1995 observation
period to the 1910-1995 reference period. This ensures the temporal homogeneity of the series by
assessing the possible missing extremes and it places all the series in a reference period where the
stationarity of the extreme precipitation has been verified. Using the 9 historical series and generating
randomly located missing values the efficiency of three data extension methods has been evaluated.
This comparison indicates that a procedure using the regional growth curve satisfies this task. It shows
that the residual mean square error of the at-site means is reduced when the mean correlation between
the reference station and the series presenting gaps exceeds 0.52 but that the corresponding error on
high order fractiles is reduced for all the observed correlation and for large numbers (40-50) of missing
values. A practical estimation of the confidence intervals is proposed.

Introduction

The distributions of the k-day extreme precipitation depths are of great interest since their knowledge
is very important in many practical domains ranging from the building of rain collectors, drainage
systems to river control. In addition to this prior knowledge of high precipitation rates in order to prevent
hydrological systems to be overloaded, one of the tasks of the Royal Meteorological Institute of Belgium
is to assess a posteriori the regions where some rain events can be considered as exceptional. This kind
of study required by the Federal Government can be followed by the use of specific funds to help the
population to repair the disaster in the cases where insurance companies refuse to pay damages not
completely covered by their contracts.

In this framework, the present study follows several studies carried out in Belgium in order to improve
the estimation of the fractiles of the extreme k-day precipitation depths. These studies were at first
centred on the long-term series of the reference station Uccle (Sneyers, 1961, 1977 and 1979; Buishand
and Demarée, 1990). Dupriez and Demarée (1988 and 1989) start to study the regional distribution of
the extreme precipitation depths  essentially by taking the stations individually, i.e. independently, and
producing maps of fractiles. The present study tends to use the links between the stations and to take
advantage of the existence of a few well-documented long-term series. These stations can be useful
in order to improve the estimates of the statistical distributions of the extremes. This study exploits the
well-established regional approach based on the Probability Weighted Moments (PWM) developed
initially by e.g. Greenwood et al. (1979) and Hosking et al. (1985) and will combine it with the data
extension procedure, a method usually used to assess missing values of data records.

In the first chapter, the data sets used are described. The statistical homogeneity of the extreme series
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is then verified by means of regional tools. This allows to consider the whole 165 stations as a
homogeneous region and to assess the GEV distributions at the regional scale. After a summary of the
regionalisation technic, the data extension procedure is described and its efficiency verified. The GEV
distribution parameters obtained by means of the combined procedure are then presented. The
construction of the confidence intervals requires some more comments which leads to the establishment
of the fractiles and their confidence intervals for any station of the studied area.

Data set presentation

Daily precipitation amounts of the Belgian climatological network are available on magnetic media for
a period starting merely in 1951. They have been studied here until 1995, i.e. for a 45-year period. The
summation of these daily values over a period of k days provides k-day precipitation. The annual
maximum values have been identified, this means the maximum values corresponding to the calendar
year and the extreme values of the hydrological winter and summer. These two separate 6-month sub-
periods are starting respectively at the 1  of October and at the 1  of April. They allow the separation,st st

at least for small k, of the mainly convective events observed in summer from the predominantly frontal
precipitation events in winter. After rejection of stations presenting more than 6 missing yearly values,
a set of 165 stations remained, i.e. on average about one station per 200 km . Figure 1 shows their2

location and their rather homogeneous distribution over the country.

The k-day extreme values have been studied for k=1, 2, 3, 4, 5, 7, 10, 15, 20, 25 and 30, for the three
above-mentioned periods of the year. Longer data records are also available but only for a few stations.
In these cases, the data sets start around 1880, the year of the foundation of the meteorological network.
Bold crosses indicate the locations of these stations in figure 1. Only 9 long-term stations have been
made available in a first stage by Bultot and its collaborators (Bultot and Dupriez, 1976; Dupriez and
Demarée, 1988). They were finalized by Demarée in the framework of the NACD project (North Atlantic
Climate Data, Frich et al., 1996). For instrumental, network and also possibly climatological reasons,
only data after 1910 are instrumentally homogeneous and can be used for studying the extreme
precipitation distribution. 

Regional homogeneity of the distributions

As shown in Gellens (2000) the extremes for each period of the year and each k value are presenting
a strong spatial correlation. This correlation is obviously stronger for the winter extremes than for the
summer values and grows with growing k. For k greater than 7 in winter the correlation between
extremes remains significant for distances greater than 200 km, this means something like the size of
the studied area. This feature indicates that extreme series must be considered in some way at the
regional scale.

Therefore before applying any regional approach, it is at first needed to verify the distributions of the
extremes of all the stations for a given k and a given period of the year can be considered as identical.
Two homogeneity tests  developed by Hosking and Wallis (1993, 1997) were thus used. These tests are
based on the study of the dispersion of the L-moments and in particular of the L-CV, the coefficient of
variation assessed by means of the L-moments, and of the L-skew and L-kurtosis.

L-moments estimators can be constructed by means of the PWM estimators. For the station j belonging
to the n=165 stations of the climatological network, the order r PWM, � , can be defined as (Greenwoodrj
et al., 1979)

�  = E[ y  [F(y)] ] with j=1, ..., nrj j j j
r

where F is the cumulative distribution function of y, the observation at station j. For simplicity, the k indexj j
indicating the aggregation step has been omitted. The L-moments are linear combinations of the PWMs.
The four first L moments are

�  = �  = µ �  = 2� -� �  = 6� -6� +� �  = 20� -30� +12� -�1j 0j j 2j 1j 0j 3j 2j -j 0j 4j 3j 2j 1j 0j
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(where µ is the mean) and the L moments ratios are the L-CV = �  = � /� , the L-skew = �  = � /�  andj j 2j 1j 3j 3j 2j
the L-kurtosis = �  = � /�4j 4j 2j

Unbiased estimators of  �  are assessed by  (Landwehr et al., 1979)rj

where n is the number extremes considered for station j and y  are the ordered observations y so thatj (i)j j
� � ... � � . Regional average L moments ratios t , t  and t  are defined asR R R

3 4

and  with l=3,4 (1)

where t , t  and t  are the estimators of � , �  and � .j 3j 4j j 3j 4j

Hosking and Wallis (1993) introduced two measures of the dispersion of the L moments ratios around
their regional average values. They defined

and fit a kappa distribution having moments equal to the regional L moments ratios t , t  and t  in orderR R R
3 4

to simulate a large number (500 in the present case) of regions with n stations having the same number
of values and the same distribution. For each of these regions the statistic V is assessed and their mean
µ  and standard deviation �  are used to determine the heterogeneity measure H asV V

They suggest that the region be considered as “acceptably homogeneous” if H<1, “possibly
heterogeneous” if 1�H<2 and “definitely heterogeneous” if H�2. These authors also introduced a second
measure V  based on t  and t3 3 4

R R

and defined H  accordingly with V .3 3

These homogeneity measures have been applied on the data sets and the results are given in table 1.
For most of the k values and periods of the year, the H and H  statistics are smaller than 1. This confirms3
the homogeneity of the data distributions. For the summer season, some k values are however
characterised by higher figures (for k equal to 4 and 5 for H, and for k equal to 5 and 10 for H ). As these3
higher values are only detected for two k values among the large number of studied cases, they were
not taken into consideration to justify a clustering procedure of the data set into smaller homogeneous
area. The same two tests applied on the historical data give only values smaller than 1 and indicate the
statistical homogeneity of the 9 long-term series. It is interesting to note that large negative values of H
and H  can be found in table 1, in particular for the tests applied on the short-term series. According to3
Hosking and Wallis (1997) these values are indicating that “there is a strong cross-correlation between
the site’ frequency distribution or that there is an excessive regularity in the data that causes the L-CVs
to be unusually close together”. In the present case these results are in consequence not surprising due
to the high density of the climatological network and the correlation between the rainfall events. It is
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indeed this general characteristic of the rainfall that will be exploited here.

Regional estimates of the GEV growth curves

In regional frequency analysis, data from different stations are combined to assess the unknown
parameters of a given distribution in a more efficient way. Several procedures exist and the comparison
carried out by Cunnane (1988) can be mentioned to shown the diversity of the methods. In the present
study the so-called index flood method based on standardized PWMs has been implemented. It
supposes (Hosking and Wallis, 1997) the Q(F) fractile function for the station j be determined by thej
product

Q(F) = µ  q(F), 0<F<1 (2)j j

of the at-site mean µ and q(F) the regional dimensionless growth curve common to all the stations. Thisj
method supposes that the stations form a homogeneous region, i.e. that the frequency distributions are
the same apart from a scaling factor. Distributions of the extreme precipitation amounts are usually
described by the GEV (General Extreme Value) distribution (Jenkinson, 1969, 1977). This choice is
theoretically and practically justified (Cong et al., 1993, Stedinger et al., 1993). 

The GEV distribution function is 
 

F(x) = exp [ -{1 - � (x-�)/�}  ] for � � 01/�

where � and � are the location and scale parameters, and � the shape parameter. The GEV distribution
reduces to the Gumbel distribution for �=0: F(x) = exp [ - exp { -(x-�)/�} ] =G(x). The three parameters
(�, �, �)  are assessed by the PWM method (Hosking et al., 1985). Equating the three first theoreticalT

moments with their estimated values equal to 1, t  and t  in the regional framework gives a system ofR R
3

three equations and their estimates . The regional mean is unit as the data have been scaled
by their means and the regional L-CV t  and L-skew t  have been defined just above. Routines usedR R

3
in the present study are those provided by Hosking (1997).

The growth curve is the inverse of F and is given by

q(F) = � + � {1-(-ln F) }/� for � � 0, 0<F<1�

It is thus a function of the three first regional L moments ratios. Hosking et al. (1985) established the
PWMs estimators of the GEV parameters. They proposed an approximation for shape parameters
belonging to the interval (-1/2,1/2) that provides here the estimator of the regional shape parameter 

 with . 

It shows the shape depends only on the regional L-skew,

and  

(3)

where  � (.) is the gamma function given by  and where and  .

In the particular case of the growth curve we have therefore according to (3) that



�̂
R
�1� �̂R[1��(1� �̂R)] /�̂R

qR(F)�1� �̂R[�(1� �̂R)� (� lnF)�R] /�̂R

yr,gi
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and hence

(4)

that depends only on two parameters.

Data extension procedure et verification of its efficiency

As mentioned in the data set description the reference period of most of the data is 1951-1995. The
selection of the extreme series described just before allows nevertheless some stations to present a few
missing extreme values. Therefore, the records of all the stations are not covering all the same years.
It has been shown in a preliminary analysis of the extreme values on Belgium (Gellens, 1995) that this
temporal inhomogeneity can have in some particular cases a strong impact on the fractile assessment.
It is particularly salient in the south of Belgium when the precipitation events corresponding to the floods
of December 1993 and January 1995 are not included in the data of a station and are present for the
neighbouring stations. Long-term fractiles are then evolving in different ways according to the existence
or not of this data in the observations. It has been shown that assessing missing extreme observations
of this particular station could restore the homogeneity of the data and could correct the evolution of the
fractiles at that location. This problem has been tested for the short-term stations close to the stations
presenting missing values (Gellens, 1998). It provides a first argument for assessing the missing values
of the extreme k-day series by means of the observations of the complete reference stations.

On the short 1951-1995 reference period, the study of the stationarity of the extreme precipitation
amounts (Gellens, 2000) has shown significant trends in winter extreme k-day precipitation for all the
values of k. No significant trend has been found in extreme summer precipitation. Annual extreme
depths show no trends for small k, as summer events dominate, and significant trends for k larger than
7 due to winter events. The analysis of the 9 long-term series showed no significant trend for the period
1910-1995, but these series also reproduce almost the same trends as those found for the majority of
the stations for the shorter 1951-1995 period. This second result also advocates for the use of the data
extension procedure to place the study of the extreme values in a framework granting the stationarity
of the studied series.

For the two reasons mentioned above, it has been decided to combine the data extension approach to
the regional procedure for distribution fitting. But before any action, it is at first needed to verify the
efficiency of the data extension procedure. In particular, does the data extension procedure reduce after
completion the at-site standard error of the extreme k-day precipitation mean which is the first factor of
the expression (2). It will be also interesting to verify if the standard error of the long-term fractiles is
accordingly reduced. The first condition is probably the most important in regional approach as the at-
site mean is used to scale the observation sets and get the same distribution on all the area. The second
one could be interesting as the shape factor of the regional distribution will depend on the highest fractile
estimates.

The fractile method consists in supposing the missing values in the record of station j, y  arej,
corresponding to the same fractiles as the observations at a reference station r for the same year. The
parameters of two distributions are therefore estimated by the PWM method on the data of the common
years of the two series, i.e. respectively the cumulative distribution function F  and F . Let’s define n’ asj r
the number of missing extreme values in the record of the station j and g  the year of these missingi
extreme values, with i=1, ... n’. The n’ fractile values at the reference station corresponding to the gaps,
i.e. the observed extremes are then used to assess the n’ missing values . Their values are given
by 

 for i=1, ... n’ (5)

The efficiency of the fractile method and hence of the data extension procedure will obviously depend
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on the choice of the F distribution. Therefore different distributions will be tested. At first it is possible to
use the regional growth curve q(F) introduced in (2) although the parameters of this growth curve are
unknown. The Gumbel distribution and finally the GEV distribution will also be compared with.

In the case of the unknown regional growth curve common to all the stations and thus to the two
samples the expression (5) reduces to a very simple expression

for i=1, ... n’

where µ  and µ are respectively the means of the station j and of the reference station r on the sub-r j
sample.

For the Gumbel distribution the expression (5) corresponds in fact to a linear relationship

 for i=1, ... n’

where � , � , �  and �  are respectively the location and scale parameters of the station j and of ther j r j
reference station r.

The verification protocol has been constructed by means of the long-term series. This avoids building
the method on some assumption dealing with the identification of the data distribution law. For a given
k and for the hydrological winter and summer, n’ randomly located gaps have been substituted to the
existing data , i=1, ...n’. By means of the study of the correlation between the series, the most
correlated station y  is selected as reference station. r

A comparison between the original mean and fractiles with those obtained after data completion can be
carried out. Values of n’ equal to 1, 5, 10, 20, 30, 40 and 50 have been considered and k=1, 3, 10 and
30. In each case 1000 sets of missing values have been built (except for n’=1 where all the missing
values can be exhaustively generated) for the 9 historical stations series. The fractiles are assessed by
means of a GEV distribution fitted on the reconstructed data using PWMs method. They are compared
with the fractile values estimated directly on the data without gaps completion. Residual mean errors of
estimation are calculated by means of the unbiased Jackknife estimates of the means and of the
fractiles. The comparison of these four residual mean errors (rms) indicates if it is interesting to assess
the missing values or not, i.e. if it reduces the rms of the estimates and the most appropriate method to
do it. As reference, the mean correlation between the series with gaps and their reference series are
also reproduced to identify the required mean correlation to get a rms reduction.

Table 2 and 3 show respectively the residual mean error on the mean and on the 200-year fractiles.
When the mean correlation is higher or equal than 0.52 it appears that the mean estimates are improved
by the data extension procedure whatever the number of gaps generated (from 1 to 50). This is not the
case for long-term fractile estimates. For a small number of gaps in the data, there is merely an
enhancement of the fractile estimates for very high mean correlation (higher than 0.70). When some 30
missing values are generated the data extension procedure gives an improvement of the fractile
assessment for a mean correlation higher than 0.52 and for more than 40 gaps the data extension
improves almost all the fractile estimates. Now if we compare the three fractiles methods, it is obvious
that the GEV based method performs poorly. The main reason is that some instabilities in the shape
parameters are occurring when small samples are used for fitting the three GEV parameters and hence
estimating the fractiles of the missing values. The method based on the Gumbel and the one based on
the regional growth curve are almost equally good as concerns the mean estimates and the results given
in table 2 for large number of gaps are not discriminating clearly the two procedures. The results
concerning the fractile estimates yielded in table 3 are advocating for the growth curve method providing
an improvement of the fractiles for almost all the correlation level for 40 and 50 gaps. In addition it gives
more coherence in the procedure than adopting a robust Gumbel distribution to assess data distributed
according to GEV distributions.
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As concerns the 165 short-term series the mean correlation between historical and short-term series is
slightly higher due to the denser network. As shown in Table 4 it reaches the 0.52 threshold for almost
all the k values in winter and summer, except for k=1,2 and 3 in summer and k=1 and 2 for the calendar
year. For these five particular cases, the data extension procedure has however been implemented as
it enhances the estimates of the fractiles in a efficient way and only reduces slightly the efficience of the
mean estimates.

Practical results

According to the efficiency tests the data extension procedure based on the regional growth curve has
been applied on all the k-day extreme precipitation and combined with the regionalisation of the
distribution parameters. The values of the parameters of the GEV regional growth curves are presented
in Figure 2. Due to the reduction of the distribution to a dimensionless curve, all the growth curves and
their parameters can be easily compared. The parameters from the three periods of the year are fairly
close to each other in particular as concerns the shape parameter. For most of the k values the location
and scale parameters of the winter and of the summer are almost the same while the calendar year
parameters are respectively slightly higher and lower. 

In addition, these pictures show that the parameters are smoothly progressing for one k value to the next
one.  The shape parameter show a clear evolution from negative values for the small k values to positive
values for k values larger than 5. Reducing the confidence interval of the shape parameter, this result
is in agreement with those presented by Buishand (1991) for The Netherlands and initial results from
Dupriez et Demarée (1988) but is in contradiction with other studies of Belgian rainfall (e.g. Demarée,
1985, Buishand and Demarée, 1990 or Delbeke, 2001). These studies are processing the stations
individually and the value �=0 provides in this case an interesting simplification for establishing Intensity-
Duration-Frequency curves. 

The regional approach adopted here confirms the change of the sign of the shape that governs the
asymptotic behaviour of the GEV distribution of the k-day extreme precipitation. For a negative shape
parameter the domain is positively unbounded whereas it is bounded for a positive shape parameter.
This means the fractiles of very long return periods corresponding to small k values will exceed those
corresponding to the larger k, a phenomenon that is not physically possible and indicates that there
could be some tail characteristics not captured by the GEV distribution. The return period corresponding
to this physical incoherence is nevertheless very long and the confidence interval of the fractiles must
be taken into consideration. Obviously adopting �=0 would solve this problem but this too restrictive
hypothesis has not been adopted here.

Confidence intervals

The estimation of the confidence can be made by following Hosking et al. (1985), Lu and Stedinger
(1992a and b) and Rosbjerg and Madsen (1995). The first order development of the expression (2) gives
the variance of the fractile estimate corresponding to a T-year return period (with T = 1 / (1-F) )

(6)

The index j related to the station and the exponent R related to the regional variables have been omitted
in this expression. The mean and the variance of the T-year fractile estimator are approximately
(Rosbjerg and Madsen, 1995)

(7)
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(8)

where A and B are given by

with  and n* the total number of data used in the regionalisation.

The terms w  are functions of the shape � and have been determined by Hosking et al. (1985) whileij
deriving the asymptotic covariance matrix D of the PWM estimators of the GEV distribution parameters

(9)

The w  terms have been evaluated numerically and can be found in Hosking et al. (1985) or Rosbjergij
and Madsen (1995).

In the present case however the three parameters of the GEV are not independent and the constraint
gives � as a function of � and of �. According to the expression (4), tthe expression (8) must be

revised; the terms w , w  and w  of (9) vanish and11 12 13

where A’ and B’ are given by

where  is the derivative of the � (.) function.

Considering  and  the expression (6) can be calculated and can
be assessed provided that m the effective size of the sample at the station j after data extension, and
n* the effective number of data introduced in (7), (8) and (9) can be evaluated.

For an observation network, Stedinger (1983) introduced an estimation of the effective number of
independent stations based on the correlation:

where  is the mean of the squared correlation coefficient among all the n stations. The values of neff

for the present data sets are presented in table 5. They are compared with a second index yielded by
the principal component analysis. The use of the principal components is common in climatology
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(Essenwanger, 1986; Jolliffe, 1990). This technic has been used in the preliminary study of the
stationarity of the k-day extreme series (Gellens, 2000) for building independent series. The number of
ranked eigenvalues of the covariance matrix required to account for 95 percent of the total variance can
be used as indicator of the number of independent components in the series. This index n  which95
integrates more information than n  based on the mean of the correlation coefficients proposed byeff
Stedinger is also given in Table 5 and can be compared with n . The two indices are decreasing witheff
k and are larger for summer than for winter. For small k values the two indices are fairly close for the
summer season and the calendar year. For 165 stations, the n  index starts with values close to 30 foreff
k=1 and for the calendar year and summer extremes. It drops quickly with growing k and reaches values
smaller than 10 for k greater than 10 in summer and values smaller than 5 for k greater than 20 in winter.
The n  index is always greater than n  and decreases slowly with growing k values. Hosking and Wallis95 eff
(1988) have shown by means of Monte Carlo simulations that n  overestimates the effect of theeff
correlation on the estimation of the number of effective independent stations and it is therefore
suggested here to adopt n  instead of n .95 eff

Obviously, the values of n  are assessed by means of the 165 short-term stations and the95
corresponding number of data is thus n* = n ×45. Considering the 9 long-term stations, this figure can95
be put to n* = n ×45+n’ ×(86-45) to take into account the historical data, where n’  is the number of95 95 95
principal components built with the historical series and needed to account for 95 percent of their total
variance. This value probably underestimates the number of data but will not create artificially sharp
confidence intervals.

By the same reasoning, the value of m in the variance of the at-site mean can be assumed to be 86 in
the case of historical series but it has to be reduced for the short-term series. Sneyers (1975) introduced
the concept of equivalent size of series of which the parameters have been improved by means of a
reference long-term series. This figure m  iseq

where m =45 is the length of the short-term data set, m =86 the length of the historical data set and �s l sl
their correlation. For example, m =51 for � =0.5 and m =59 for � =0.7.eq sl eq sl

According to these proposals to assess n* and m it is possible to estimate the confidence intervals of
the growth curves and of the fractile curves. The upper and lower bounds, U  and U , of theinf sup
confidence interval corresponding to a �  = 0.95 probability level are0

 and (10)
where N  is the fractile of the reduced Normal distribution corresponding to the probability level �.�

Replacing by  and equating  to 1 in expression (10) gives the confidence interval of the
growth curve. Figure 3 shows the fractiles curves and their confidence intervals for the historical station
Uccle for a selection of k values.

Discussion and conclusion

Usually data extension procedure and regionalisation are not combined. Usually in the regionalisation,
long-term and short-term series  are placed on the same level by normalizing (see expression 1) their
contribution with respect to their length. Long-term series have thus more weight than the short-term
series but they are not used as reference. In the present case the 9 historical series would have been
completely hidden by the 165 stations of the climatological network.

The present study has shown the interest in climatology to use the data of a few well-documented
stations in a regional approach by giving them a central role, i.e. using them to improve the estimation
of the at-site means and giving the opportunity to place some non stationary data sets in the stationary
framework of the long-term series. Of course this procedure requires a dense station network and is only
fruitfully applicable when the mean correlation between the short-term and the reference long-term
series is higher than approximately 0.5. Some improvement of the procedure could be proposed in the
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future. In particular it is clear that the number of historical stations can be enlarged and the addition of
one or two stations in the north of the country could be very useful to get a more regular density of
reference stations. Other conceptual improvements could also be introduced by modifying the data
extension procedure exploiting more, e.g. the correlation between the series. But in any case the
efficiency of this modification ought to be compared with the method presented here. 

The procedure presented here is certainly not as good as having all the data sets of all the stations
available in a well-documented data base. The encoding of the old data only available on paper
documents is nevertheless requiring a careful preparation, a lot of time and devoted employees. It is in
many cases very difficult to find quickly the meta-data to identify the changes of location of the station
or the changes of instruments. The method proposed here allows thus to cope with the many common
difficulties in the data base management by according a particular attention to a restricted sample of
long-term stations. Although the present methodology has been applied here to the Belgian rainfall
records, it is clear that it might be of interest for other climatological variables and certainly for other
countries. 
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Figure captions

Figure 1. Location map of the climatological and historical stations.

Figure 2. Regional GEV parameters of the k-day extreme precipitation for the calendar year and the
hydrological summer and winter.

Figure 3. Fractiles and 95 percent confidence intervals of the calendar year k-day extreme
precipitations.(k=1, 3, 5, 10, 20 and 30).
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Table captions

Table 1. Heterogeneity measures H and H  applied on the k-day extreme value series of the calendar3
year and of the hydrological summer and winter of the 9 historical (long-term) and of the 165
short-term stations. Bold figures are higher than 1 and underlined are higher than 3.

Table 2. Average mean values of the summer and winter k-day extreme precipitation with k=1, 3, 10 and
30. Residual mean square error (rms) of the means without (no est.) and with estimation of n=1,
5,10, 20, 30, 40 and 50 randomly located missing values. The labels est. reg corresponds to the
regional growth curve procedure, while est. Gumbet and est. GEV correspond respectively to
the procedures based on the Gumbel and on the GEV distributions. Bold figures indicate the
smaller rms value for each comparison. Mean correlation  between the series with missing
values and their reference complete station. Shadowed cells indicate the cases where the rms
of the means is smaller with the estimation of the missing values than without.

Table 3. Mean Jackknifed 200-year fractile values  of the summer and winter k-day extreme
precipitation with k=1, 3, 10 and 30. Same residual mean square error as in table 2 for the 200-
year fractiles.

Table 4. Mean correlation between short-term series and their corresponding reference historical series.
Shadowed cells indicate the cases where the mean correlation is larger than the 0.52 threshold.

Table 5. Estimations of the effective number of independent stations, n , and of n , the number ofeff 95
principal components needed to explain 95 percent of the total variance of the observations.
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Table 1. Heterogeneity measures H and H  applied on the k-day extreme value series of the calendar3
year and of the hydrological summer and winter of the 9 historical (long-term) and of the 165
short-term stations. Bold figures are higher than 1 and underlined are higher than 3.

long-term series short-term series

calendar year hydrological hydrological calendar year hydrological hydrological
summer winter summer winter

k H H H H H H H H H H H H3 3 3 3 3 3

1 -0.42 0.18 0.37 -0.26 0.88 0.01 -1.04 0.87 -0.25 0.52 -1.21
2 -1.09 -1.38 0.78 -0.95 0.05 -1.87 -1.81 0.41 -2.52 -3.49 -3.34
3 -0.78 -0.77 0.71 -0.77 0.37 -1.08 -2.61 -0.94 -4.73 -2.80
4 -0.44 0.05 0.77 -0.61 0.30 -0.63 -2.29 -4.17 -2.32
5 -0.17 0.54 -0.92 0.11 0.63 -0.41 -2.83 -3.21
7 -0.57 -0.73 -0.75 0.45 -0.83 -0.61 -1.70 -2.01
10 -0.79 -0.92 -1.29 -0.33 -1.12 -1.73 -0.88 -1.51
15 -1.73 -0.29 0.06 -0.80 -1.10 0.12 0.82
20 -0.96 -0.37 0.41 0.12 -1.59 0.61
25 0.12 -0.93 -0.08 0.24 -0.50 -1.84
30  0.75 -1.43 -0.03 -0.13 0.03 -3.00

1.09 0.52
0.50 -1.26
-0.38 -0.44
0.42 -0.90 1.70
-0.05 -3.06 1.50
0.38 -3.54 -3.03
0.53 -4.40 -4.18

1.94
0.34
-0.05 1.91
0.84 1.753.36

3.57
0.56 1.08
1.06 3.33
-0.04 -1.82
-2.64
-4.19
-5.45

3.25

2.26
-1.91
-3.17

1.77
-2.04
-5.23
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Table 2. Average mean values of the summer and winter k-day extreme precipitation with k=1, 3, 10 and
30. Residual mean square error (rms) of the means without (no est.) and with estimation of n=1,
5,10, 20, 30, 40 and 50 randomly located missing values. The labels est. reg corresponds to the
regional growth curve procedure, while est. Gumbet and est. GEV correspond respectively to
the procedures based on the Gumbel and on the GEV distributions. Bold figures indicate the
smaller rms value for each comparison. Mean correlation  between the series with missing
values and their reference complete station. Shadowed cells indicate the cases where the rms
of the means is smaller with the estimation of the missing values than without.

hydrological summer hydrological winter

m i s s i n g 1-day 3-day 10-day 30-day 1-day 3-day 10-day 30-day
value(s)

mean (mm) 34,754 50,135 83,27 150,622 30,128 51,863 92,324 165,52

1 no est. 0.2722 0.4513 0.1246 0.2020 0.2996 0.4989
est. reg. 0.2760 0.1183 0.1754 0.3589

est. Gumbel
est. GEV

0.1499 0.1820
0.1807 0.2037 0.3717 0.2228
0.1856 0.2040 0.2714 0.3759 0.1168 0.1715 0.2247 0.3505
0.1916 0.2083 0.2784 0.4059 0.1178 0.1751 0.2337 0.3492

5 no est. 0.6309 1.0340 0.2848 0.4724 0.7000 1.1704
est. reg. 0.6302 0.2651 0.3974 0.8290

est. Gumbel
est GEV

0.3476 0.4259
0.4263 0.4752 0.8388 0.5053
0.4401 0.4762 0.6203 0.8500 0.2615 0.3885 0.5101 0.8115
0.4568 0.4893 0.6374 0.9333 0.2652 0.3970 0.5383 0.8245

10 no est. 1.5162 0.4165 0.6871 1.0113 1.7131
est. reg. 0.3935 0.5792 1.2145

est. Gumbel
est. GEV

0.5033 0.6155 0.9115
0.6108 0.6867 0.9279 1.2465 0.7478
0.6301 0.6894 0.9126 1.2631 0.3882 0.5680 0.7543 1.1895
0.6597 0.7102 0.9348 1.3641 0.3938 0.5806 0.7949 1.2065

20 no est. 2.3327 0.6356 1.0391 1.5420 2.6013
est. reg. 0.5968 0.8860 1.8402

est. Gumbel
est. GEV

0.7642 0.9307 1.3804
0.9336 1.0425 1.4116 1.9129 1.1382
0.9693 1.0490 1.3904 1.9316 0.5889 0.8681 1.1488 1.7996
1.1468 1.1180 1.4195 2.0721 0.8272 0.8952 1.2258 1.8346

30 no est. 3.0598 0.8493 1.3870 2.0378 3.3936
est. reg. 0.7874 1.1642 2.4178

est. Gumbel
est. GEV

1.0169 1.2460 1.8473
1.2369 1.3825 1.8708 2.5463 1.4972
1.2934 1.3970 1.8489 2.5829 0.7804 1.1430 1.5164 2.3783
1.6747 1.5887 1.9275 2.7404 0.8573 1.1914 1.6475 2.4354

40 no est. 3.8279 1.0922 1.7673 2.5501 4.2747
est. reg. 1.0246 1.5160 3.0963

est. Gumbel
est. GEV

1.2954 1.5729 2.3234
1.5850 1.7850 2.3880 3.2261 1.9130
1.6557 1.8117 2.3609 3.2713 1.0212 1.4977 1.9468 3.0505
4.2341 3.1111 2.4656 3.4715 2.5929 1.6206 2.0533 3.1189

50 no est. 4.8194 1.3848 2.2098 3.2523 5.3728
est. reg. 1.9393 3.8979

est. Gumbel
est. GEV

1.6210 1.9867 2.9376
1.9612 2.2292 2.9941 4.1045 1.2922 2.4431
2.0449 2.2727 2.9764 4.1624 1.2961 1.9278 2.4994 3.8550
3.1255 2.7355 3.0927 4.5729 9.8495 2.3454 4.8893 4.0213

0,353 0,424 0,515 0,622 0,533 0,658 0,735 0,767
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Table 3. Mean Jackknifed 200-year fractile values  of the summer and winter k-day extreme
precipitation with k=1, 3, 10 and 30. Same residual mean square error as in table 2 for the 200-
year fractiles.

hydrological summer hydrological winter

m i s s i n g 1-day 3-day 10-day 30-day 1-day 3-day 10-day 30-day
value(s)

 (mm) 89,4 112,14 163,5 265,68 73,84 121,45 175,49 299,73

1 no est. 3.28 3.81
est. reg. 3.73

est. Gumbel 3.68
est. GEV

2.01 1.63 2.05 2.09 1.92 2.16
2.52 2.10 2.49 3.26 2.20 2.19 2.26
2.69 2.14 2.49 3.35 2.20 2.17 2.30
2.94 2.37 2.92 4.31 2.21 2.25 2.63 3.65

5 no est. 6.71 7.69
est. reg. 7.42

est. Gumbel
est. GEV

3.49 3.33 4.27 3.15 3.73 4.30
4.86 4.48 5.29 6.45 3.42 4.38 4.53
5.45 4.57 5.32 6.69 3.42 4.33 4.64 7.23
6.34 5.41 6.69 9.88 3.63 4.62 6.04 8.32

10 no est. 9.47 10.96
est. reg. 10.62

est. Gumbel
est. GEV

4.70 4.70 6.08 4.27 5.31 6.14
6.40 6.15 7.38 9.14 4.57 6.04 6.26
7.41 6.30 7.40 9.42 4.60 6.03 6.43 10.23
9.26 7.89 9.39 13.14 5.09 6.62 8.66 11.59

20 no est. 13.74 6.48 9.37 16.22
est. reg. 15.72

est. Gumbel
est. GEV

6.91 7.04 9.03 8.16
8.56 8.70 10.32 13.33 6.35 8.51 8.91
10.47 8.97 10.48 13.46 6.54 8.65 9.20 14.77
19.23 14.04 14.12 19.98 11.31 10.37 14.15 16.68

30 no est. 18.21 8.74 11.00 12.61 21.09
est. reg. 20.54

est. Gumbel
est. GEV

9.11 9.31 11.96
9.77 10.60 12.60 16.99 7.87 10.46 10.78
12.68 11.17 12.93 17.06 8.29 10.79 11.27 19.28
26.55 24.34 20.97 23.90 14.26 14.54 20.99 22.76

40 no est. 11.70 15.24 23.12 11.21 14.05 15.68 26.75
est. reg. 24.99

est. Gumbel
est. GEV

10.98 12.26 14.62 20.36 8.99 12.27 12.53
15.09 13.23 15.26 20.45 9.81 13.15 13.45 23.75
44.32 33.88 27.29 30.84 21.09 21.58 23.77 28.62

11.89

50 no est. 14.62 15.03 19.76 29.31 14.38 17.96 20.20 34.31
est. reg. 29.59

est. Gumbel
est. GEV

11.70 13.88 16.57 23.67 9.96 13.93 14.38
17.12 15.62 18.14 24.11 11.42 15.56 15.95 28.60
51.22 45.57 35.23 40.54 29.08 33.36 35.54 39.07

0.353 0.424 0.515 0.622 0.533 0.658 0.735 0.767
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Table 4. Mean correlation between short-term series and their corresponding reference historical series.
Shadowed cells indicate the cases where the mean correlation is larger than the 0.52 threshold.

 

1-day 2-day 3-day 4-day 5-day 7-day 10-day 15-day 20-day 25-day 30-day

c a l e n d a r 0.44 0.51 0.53 0.57 0.58 0.58 0.6 0.65 0.68 0.7 0.73
year

hydrological 0.45 0.49 0.5 0.52 0.52 0.53 0.54 0.59 0.63 0.64 0.65
summer.

hydrological 0.6 0.69 0.72 0.73 0.73 0.76 0.79 0.81 0.82 0.84 0.84
winter
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Table 5. Estimations of the effective number of independent stations, n , and of n , the number ofeff 95
principal components needed to explain 95 percent of the total variance of the observations.

calendar year hydrological summer hydrological winter

n n n n n neff 95 eff 95 eff 95

1-day 28.1 31. 27.3 31. 9.6 22.
2-day 20.3 29. 22.0 30. 7.2 20.
3-day 16.7 28. 19.2 29. 6.5 18.
4-day 15.6 27. 17.6 29. 6.6 19.
5-day 14.6 27. 16.7 28. 6.4 18.
7-day 13.9 26. 17.0 28. 6.3 18.
10-day 11.2 24. 14.8 26. 5.5 17.
15-day 9.0 23. 10.7 24. 5.2 17.
20-day 7.4 21. 8.7 23. 5.0 16.
25-day 6.0 20. 7.2 21. 4.6 16.
30-day 5.1 18. 6.1 21. 4.2 14.
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Figure 1. Location map of the climatological and historical stations.
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Figure 2. Regional GEV parameters of the k-day extreme precipitation for the calendar year and the
hydrological summer and winter.
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Figure 3. Fractiles and 95 percent confidence intervals of the calendar year k-day extreme
precipitations.(k=1, 3, 5, 10, 20 and 30).


